الرياضيات المتناهية الأمثلة

أثبت أن الجذر يقع ضمن المجال y=64-x^2 , [-8,8]
,
خطوة 1
أعِد ترتيب و.
خطوة 2
تنص مبرهنة القيمة الوسطية على أنه إذا كانت دالة متصلة ذات قيمة حقيقية في الفترة ، وكانت عددًا بين و، إذن توجد في الفترة حيث إن .
خطوة 3
نطاق العبارة هو جميع الأعداد الحقيقية ما عدا ما يجعل العبارة غير معرّفة. في هذه الحالة، لا يوجد عدد حقيقي يجعل العبارة غير معرّفة.
ترميز الفترة:
ترميز بناء المجموعات:
خطوة 4
احسب .
انقر لعرض المزيد من الخطوات...
خطوة 4.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 4.1.1
ارفع إلى القوة .
خطوة 4.1.2
اضرب في .
خطوة 4.2
أضف و.
خطوة 5
احسب .
انقر لعرض المزيد من الخطوات...
خطوة 5.1
بسّط كل حد.
انقر لعرض المزيد من الخطوات...
خطوة 5.1.1
ارفع إلى القوة .
خطوة 5.1.2
اضرب في .
خطوة 5.2
أضف و.
خطوة 6
بما أن يقع في الفترة ، أوجِد قيمة في الجذر في المعادلة بتعيين قيمة لتصبح مساوية لـ في .
انقر لعرض المزيد من الخطوات...
خطوة 6.1
أعِد كتابة المعادلة في صورة .
خطوة 6.2
اطرح من كلا المتعادلين.
خطوة 6.3
اقسِم كل حد في على وبسّط.
انقر لعرض المزيد من الخطوات...
خطوة 6.3.1
اقسِم كل حد في على .
خطوة 6.3.2
بسّط الطرف الأيسر.
انقر لعرض المزيد من الخطوات...
خطوة 6.3.2.1
قسمة قيمتين سالبتين على بعضهما البعض ينتج عنها قيمة موجبة.
خطوة 6.3.2.2
اقسِم على .
خطوة 6.3.3
بسّط الطرف الأيمن.
انقر لعرض المزيد من الخطوات...
خطوة 6.3.3.1
اقسِم على .
خطوة 6.4
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
خطوة 6.5
بسّط .
انقر لعرض المزيد من الخطوات...
خطوة 6.5.1
أعِد كتابة بالصيغة .
خطوة 6.5.2
أخرِج الحدود من تحت الجذر، بافتراض أن الأعداد حقيقية موجبة.
خطوة 6.6
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
انقر لعرض المزيد من الخطوات...
خطوة 6.6.1
أولاً، استخدِم القيمة الموجبة لـ لإيجاد الحل الأول.
خطوة 6.6.2
بعد ذلك، استخدِم القيمة السالبة لـ لإيجاد الحل الثاني.
خطوة 6.6.3
الحل الكامل هو ناتج كلا الجزأين الموجب والسالب للحل.
خطوة 7
تنص مبرهنة القيمة الوسطية على وجود جذر في الفترة لأن هي دالة متصلة على .
تقع الجذور عند في الفترة .
خطوة 8